Guillo, M., Mercey, B. \& Deschanvres, A. (1979). Mater. Res. Bull. 14, 947-954.
Lewis, J. Jr \& Kupčík, V. (1974). Acta Cryst. B30, 848-852.
Mariolacos, K., Kupčík, V., Ohmasa, M. \& Miehe, G. (1975). Acta Cryst. B31, 703-708.

Mumme, W. G. (1975). Am. Mineral. 60, 300-308.
Puff, H. \& KüSter, J. (1962). Naturwissenschaften, 49, 464-468.

St John, J. \& Bloch, A. (1974). Phys. Rev. Lett. 33, 1095-1098.

Acta Cryst. (1980). B36, 2523-2526

The Structure of Cesium Hydrogensulfite

By Lars-Gunnar Johansson, Oliver Lindqvist and Nils-Gösta Vannerberg
Department of Inorganic Chemistry, Chalmers University of Technology and the University of Göteborg, S-412 96 Göteborg, Sweden

(Received 3 April 1980; accepted 13 May 1980)

Abstract

The structure of the hydrogensulfite ion has been determined for the first time in CsHSO_{3} which crystallizes in space group $R 3 m$ with $a=4.6721$ (7) \AA, $a=85.31(1)^{\circ}, Z=1$. The absolute configuration of the structure was refined to $R=0.014$ for 506 independent reflections. The S atom has tetrahedral coordination, with three pyramidal $\mathrm{S}-\mathrm{O}$ bonds and an $\mathrm{S}-\mathrm{H}$ bond in the fourth direction. The $\mathrm{S}-\mathrm{O}$ distance is 1.454 (2) \AA and the $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angle $113.1(2)^{\circ}$. The bond distance is similar to that in the SO_{4}^{2-} ion, while it differs markedly from that in the SO_{3}^{2-} ion. The Cs^{+}ion is nine-coordinated with $\mathrm{Cs}-\mathrm{O}$ distances of 3.231 (4)3.249 (4) A.

Introduction

The existence of crystalline hydrogensulfites has long been a subject of controversy. Foerster, Brosche \& Norberg-Scholtz (1924) proposed that the crystalline bisulfites of sodium and potassium were not hydrogensulfites but pyrosulfites of composition $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$. Simon \& Schmidt (1960) reported the synthesis of solid hydrogensulfites, RbHSO_{3} and CsHSO_{3}, and Beck (1959) reported the existence of a salt of composition $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{5} .4 \mathrm{KHSO}_{3}$. Maylor, Gill \& Goodall (1972) described the preparation of three compounds: $\mathrm{N} R_{3} \mathrm{HSO}_{3}$, with $R=$ ethyl, n-butyl and n-amyl. The existence of $\mathrm{NH}_{4} \mathrm{HSO}_{3}$ has also been reported (Hisatune \& Heicklen, 1975). The conclusion that these compounds really contained the HSO_{3}^{-}ion was based on evidence from IR and Raman spectroscopy. The existence of CsHSO_{3} and RbHSO_{3} was disputed by Schmidt \& Wirwoll (1960) who argued that the failure of CsHSO_{3} and RbHSO_{3} to react with

0567-7408/80/112523-04\$01.00
$\mathrm{S}_{2} \mathrm{Cl}_{2}$ in anhydrous tetrahydrofuran forming HCl and $M_{2} \mathrm{~S}_{4} \mathrm{O}_{6}\left(2 \mathrm{MHSO}_{3}+\mathrm{S}_{2} \mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}+M_{2} \mathrm{~S}_{4} \mathrm{O}_{6}\right)$ showed that these salts did not contain hydrogensulfite ions but were pyrosulfites. However, a recent spectroscopic investigation (Meyer, Peter \& ShaskeyRosenlund, 1979) provides ample evidence for the existence of the HSO_{3}^{-}ion.

The structure of the HSO_{3}^{-}ion has also been a matter of discussion. The proton may be connected either to an O atom, $\mathrm{HO}-\mathrm{SO}_{2}^{-}$, or to the S atom, HSO_{3}^{-}. IR and Raman studies of solid salts and solutions have indicated the form HSO_{3}^{-}rather than $\mathrm{HO}-\mathrm{SO}_{2}^{-}$(Simon \& Schmidt, 1960; Hisatune \& Heicklen, 1975; Meyer et al., 1979). However, some authors believe that the two forms exist in equilibrium in aqueous solution (Simon \& Kriegsmann, 1956; Golding, 1960).

The present study of CsHSO_{3} is the first crystallographic structure determination of a compound containing the HSO_{3}^{-}ion.

Experimental

Crystals of CsHSO_{3} were prepared by dissolving 2.0 g of dry $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in $4.0 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ under N_{2}. The reaction vessel was then held at 313 K , while $\mathrm{SO}_{2}(\mathrm{~g})$ was passed through the solution to saturation, $\mathrm{CO}_{2}(\mathrm{~g})$ being evolved. The clear yellow liquid was then cooled slowly under $\mathrm{SO}_{2}(\mathrm{~g})$. At 301 K colorless crystals formed; most were irregular in shape, but some were well formed, flat, trigonal pyramids with the corners of the basal plane truncated. Dry crystals are stable in air.

A few crystals were ground in an agate mortar and the IR spectrum (Table 1) was recorded with the Nujol mull technique. The spectrum agrees well with that published by Simon \& Schmidt (1960), who assigned

[^0]the absorption at $\sim 2580 \mathrm{~cm}^{-1}$ to an $\mathrm{S}-\mathrm{H}$ stretching vibration.

A pyramidal crystal of height 0.06 mm and with a truncated basal plane approximately 0.12 mm in cross section was mounted on a glass rod. Data were collected with a four-circle computer-controlled Syntex $P 2_{1}$ diffractometer. Crystallographic data and information relevant to the data collection are given in Table 2. The cell dimensions were refined from Guinier powder data with $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ as internal standard $\left[a_{\mathrm{Pb}\left(\mathrm{NO}_{1}\right)_{2}}=7.8566 \AA\right.$ at 294 K ; International Tables for X-ray Crystallography, 1962] with POWDER (Lindqvist \& Wengelin, 1967).

Integrated intensities and $\sigma(I)$ values were obtained by the Lehmann \& Larsen (1974) profile-analysis method (LELA; Lindqvist \& Ljungström, 1979). The reflections were corrected for Lp effects, and an absorption correction was carried out with DATAPH (Coppens, Leiserowitz \& Rabinovich, 1965; modified by W. C. Hamilton).

Tab!e 1. Infrared absorption frequencies $\left(\mathrm{cm}^{-1}\right)$ for CsHSO_{3} in Nujol mull

513	1122
633	1205
1043	2579

Table 2. Experimental data
(a) Physical and crystallographic data

Formula	CsHSO_{3}	$a_{r}=4.6721(7) \AA$
M_{r}	213.97	$a_{r}=85.31(1)^{\circ}$
Space group	$R 3 m$	$V_{r}=101.01(2) \AA^{3}$
μ	$9.62 \mathrm{~mm}^{-1}$	$a_{h}=6.332(1) \AA$
d_{c}	$3.51 \mathrm{Mg} \mathrm{m}^{-3}$	$c_{h}=8.729(1)$
Crystal habit	Colorless pyramids (truncated)	$Z_{r}=1$
		$F(000)_{r}=96$

(b) Data collection

Crystal dimensions (index of limiting crystal planes and distance to common origin)

Structure determination

The diffraction pattern showed $3 m$ Laue symmetry. There were no systematic absences and thus the space group could be either $R 3 m$ or $R \overline{3} \mathrm{~m}$. Since $Z=1$, it was concluded that the Cs and S atoms are situated on the threefold axis in space group $R 3 m$. The origin was fixed by specifying the Cs coordinates as $(0,0,0)$. A Fourier summation gave the S position on the threefold axis, and the O atoms were located at a threefold position on the mirror planes. Since Cs contributes to all the reflections, it was not possible to determine the position of the H atom. A neutron diffraction study is in progress.

2556 symmetry-related reflections were averaged, giving 506 independent reflections. The individual e.s.d.'s were modified as $\sigma(F)_{\text {ind }}=\left[\sigma^{2}(F)_{\text {count }}+\right.$ $\left.(0.02 F)^{2}\right]^{1 / 2}$ and the e.s.d.'s for the averaged structure factors were evaluated as $\sigma(\bar{F})_{\text {ave }}=(1-n)^{-1} \sum\left(F_{\text {ind }}-\right.$ $\bar{F})^{2} \sigma^{-2}(F)_{\text {ind }} / \sum \sigma^{-2}(F)_{\text {ind }}$ for $n=3$ or 6 . For reflections of class $h h h($ i.e. $n=1), \sigma(\bar{F})_{\text {ave }}$ was set to $2 \sigma(F)_{\text {ind }}$.

The final refinement, based on the averaged structure factors, was performed with the full-matrix least-squares program LINUS (Coppens \& Hamilton, 1970). Atomic coordinates, anisotropic temperature factors and a parameter for secondary extinction were varied and the results are given in Table 3.*

The scattering factors of Doyle \& Turner (1968) were used for $\mathrm{Cs}^{+}, \mathrm{S}$ and O , and the calculated structure factors were corrected for anomalous dispersion (Cromer, 1965). The configuration given in Table 3 is correct with respect to the right-hand unit cell, since a refinement of the inverted structure raised R from 0.014 to 0.029 . The physical properties of the CsHSO_{3} crystals have not been studied, and the only

[^1]
Table 3. Atomic parameters

Positional parameters are given as fractions of the lattice translation.
The temperature factor is given as $T=\exp \left\{-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+\right.\right.$
$\left.\left.l^{2} \beta_{33}+2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right) \times 10^{4}\right]$.

	x		y	z		
Cs	0		0	0		
S	0.4461 (3)		0.4461 (3)	0.4461 (3)		
O	$0 \cdot 1461$ (4)		0.5293 (7)	0.5293 (7)		
	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Cs	234 (2)	234 (2)	234 (2)	13 (1)	13 (1)	13 (1)
S	189 (3)	189 (3)	189 (3)	-8(3)	-8(3)	-8(3)
O	205 (6)	356 (9)	356 (9)	31 (7)	31 (7)	15 (6)

Extinction parameter: $g=0.005(1) \times 10^{4}$
$R=\sum\left|F_{o}-F_{c}\right| \Sigma F_{o}=0.014$
$R_{w}=\left(\left\lfloor w\left|F_{a}-F_{c}\right|^{2} / \searrow w F_{o}^{2}\right)^{1 / 2}=0.019\right.$
feature which may be related to the absolute configuration is that the triangular basal plane of O atoms of the HSO_{3}^{-}ion is oriented in the same way as the basal plane of the crystal investigated.

Discussion

Bond distances and angles are given in Table 4. The geometry of the HSO_{3}^{-}ion is illustrated in Fig. 1.

Although the position of the H atom could not be determined, it may be concluded that the H atom is indeed bonded to S . Structural evidence for such a conclusion is the $C_{3 v}$ symmetry of the SO_{3} group and the short $\mathrm{S}-\mathrm{O}$ distance. The existence of an $\mathrm{S}-\mathrm{H}$ bond is further supported by the IR data (Table 1).

The packing of the Cs^{+}and HSO_{3}^{-}ions may be regarded as that of a distorted CsCl -type structure. However, the real O atom coordination of the Cs^{+}ion is more complicated, with six short and three long $\mathrm{Cs}-\mathrm{O}$ contacts (Table 4).

S-O distances and angles are compared in Table 5 for some representative compounds. An S-O single bond has been estimated to be $1.69 \AA$ (Pauling, 1952), and it is therefore reasonable to assume contributions of π-bond character in all the anions. Cruickshank (1961), Cruickshank \& Webster (1968) and Kirkegaard, Larsson \& Nyberg (1972) have suggested the formation of two π-bonding orbitals from the $\mathrm{S} 3 d$ orbitals and the $\mathrm{O} 2 p$ orbitals in tetrahedrally

Table 4. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$
The HSO_{3}^{-}ion

S-O	$1.454(2)$	$\mathrm{O}-\mathrm{S}-\mathrm{O}$	$113.13(20)$
$\mathrm{O}-\mathrm{O}$	$2.426(6)$		

The Cs-O coordination polyhedron

$\mathrm{Cs}-3 \mathrm{O}^{\prime}$	$3.231(4)$	$\mathrm{O}^{\prime}-\mathrm{Cs}-\mathrm{O}^{\prime}$	$74.37(7)$
$\mathrm{Cs}-6 \mathrm{O}^{\prime \prime}$	$3.249(4)$	$\mathrm{O}^{\prime}-\mathrm{Cs}-\mathrm{O}^{\prime \prime}$	$92.27(9)$
$\mathrm{Cs}-3 \mathrm{O}^{\prime \prime \prime}$	$3.775(4)$	$\mathrm{O}^{\prime}-\mathrm{Cs}-\mathrm{O}^{\prime \prime}$	$140.00(8)$
		$\mathrm{O}^{\prime}-\mathrm{Cs}-\mathrm{O}^{\prime \prime}$	$65.69(7)$
		$\mathrm{O}^{\prime \prime}-\mathrm{Cs}-\mathrm{O}^{\prime \prime}$	$153.93(8)$
		$\mathrm{O}^{\prime \prime}-\mathrm{Cs}-\mathrm{O}^{\prime \prime}$	$73.87(6)$
		$\mathrm{O}^{\prime \prime}-\mathrm{Cs}-\mathrm{O}^{\prime \prime}$	$116.72(6)$
		$\mathrm{O}^{\prime \prime}-\mathrm{Cs}-\mathrm{O}^{\prime \prime}$	$43.84(6)$

Fig. 1. The HSO_{3}^{-}ion.

Table 5. Some interatomic distances (\AA) and angles $\left(^{\circ}\right)$ for representative compounds containing tetrahedrally coordinated S

	$\mathrm{S}-\mathrm{O}$	$\mathrm{O}-\mathrm{S}-\mathrm{O}$	$\mathrm{O}-\mathrm{O}$	Reference
$\mathrm{Na}_{2} \mathrm{SO}_{3}$	$1.504(3)$	105.69 (17)	$2 \cdot 397$ (6)	Larsson \& Kirkegaard (1969)
$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}^{*}$	1.456 (2)	$112 \cdot 1$ (1)	2.416	Charbonnier, Faure \& Loiseleur (1977)
CsHSO_{3}	1.454 (2)	113.1 (2)	2.426 (6)	This work
$\mathrm{Na}_{2} \mathrm{SO}_{4}{ }^{*}$	1.476 (1)	109.48	2.410 (2)	Nord (1973)

coordinated $\mathrm{S}-\mathrm{O}$ ions. This explains the short $\mathrm{S}-\mathrm{O}$ distance ($1.476 \AA$) in the SO_{4}^{2-} ion. The replacement of one of the O atoms in the sulfate group by an entity unable to participate in π bonding may thus lead to a strengthening of the remaining $\mathrm{S}-\mathrm{O}$ bonds, since the available $3 d$ orbitals of S will now be shared by only three O atoms. For the SO_{3}^{2-} ion the lone pair on the S atom will cause an increase in energy for the $\mathrm{S} 3 d$ orbitals, thus decreasing the $\mathrm{S}-\mathrm{O}$ bond strength. The repulsive forces exerted by the lone pair on the S atom will also tend to decrease the $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angle in the sulfite ion.

This line of reasoning accounts successfully for the bond lengths and angles found in CsHSO_{3}. As predicted, the $\mathrm{S}-\mathrm{O}$ distance in the HSO_{3}^{-}ion is shorter than in both the sulfite and the sulfate ions, 1.454 (2) \AA compared to $1.504(3)\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$ and $1.476(1) \AA$ $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Furthermore, the $\mathrm{S}-\mathrm{O}$ distance in CsHSO_{3} is close to the values found for $\mathrm{CH}_{3}-\mathrm{SO}_{3}^{-}$. This is to be expected since neither CH_{3} nor H can participate in π bonding and the two entities are chemically similar.

The $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angle in the sulfite group will tend to increase due to repulsion between the O atoms and to decrease due to repulsion between the lone pair on S and the O atoms. In $\mathrm{Na}_{2} \mathrm{SO}_{3}$ this results in an $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angle $\left(105.7^{\circ}\right)$ which is smaller than the tetrahedral angle (109.47°). In HSO_{3}^{-}the repulsive forces between the O atoms are no longer balanced by the repulsion due to the lone pair, giving an $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angle of 113.1°.

The fact that an $\mathrm{O}-\mathrm{H}$ bond is normally stronger than an $\mathrm{S}-\mathrm{H}$ bond would favor the configuration $\mathrm{HO}-\mathrm{SO}_{2}^{-}$rather than $\mathrm{H}-\mathrm{SO}_{3}^{-}$. However, according to Meyer, Peter \& Spitzer (1977), the orbital corresponding to the lone pair on the S atom is antibonding. When the proton is accepted this orbital loses its antibonding character and the three $\mathrm{S}-\mathrm{O}$ bonds are further stabilized, which is evident from a comparison between the $\mathrm{S}-\mathrm{O}$ lengths in SO_{3}^{2-} and HSO_{3}^{-}.

The authors thank the Swedish Natural Science Research Council for financial support.

References

Beck, G. (1959). Diplom-arbeit, Dresden, German Democratic Republic.
Charbonnier, F., Faure, R. \& Loiseleur, H. (1977). Acta Cryst. B33, 1845-1848.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cruickshank, D. W. J. (1961). J. Chem. Soc. pp. 5486-5504.
Cruickshank, D. W. J. \& Webster, B. C. (1968). Inorganic Sulphur Chemistry, pp. 7-48. Amsterdam: Elsevier.
Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-397.
Foerster, F., Brosche, A. \& Norberg-Scholtz, C. (1924). Z. Phys. Chem. 110, 435-496.

Golding, R. M. (1960). J. Chem. Soc. pp. 3711-3716.
Hisatune, I. C. \& Heicklen, J. (1975). Can. J. Chem. 53, 2646-2656.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Kirkegaard, P., Larsson, L. O. \& Nyberg, B. (1972). Acta Chem. Scand. 26, 218-224.
Larsson, L. O. \& Kirkegaard, P. (1969). Acta Chem. Scand. 23, 2253-2260.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A 30 , 580-584.
Lindqvist, O. \& Luungström, E. (1979). J. Appl. Cryst. 12, 134.

Lindqvist, O. \& Wengelin, F. (1967). Ark. Kemi, 28, 179-191.
Maylor, R., Gill, J. B. \& Goodall, D. C. (1972). J. Chem. Soc. Dalton Trans. pp. 2001-2003.
Meyer, B., Peter, L. \& Shaskey-Rosenlund, C. (1979). Spectrochim. Acta Part A, 35, 345-354.
Meyer, B., Peter, L. \& Spitzer, K. (1977). Inorg. Chem. 16, 27-33.
Nord, A. G. (1973). Acta Chem. Scand. 27, 814-822.
Pauling, L. (1952). J. Phys. Chem. 56, 361-365.
Schmidt, M. \& Wirwoll, B. (1960). Z. Anorg. Allg. Chem. 303, 184-189.
Simon, A. \& Kriegsmann, H. (1956). Chem. Ber. 89, 2442-2450.
Simon, A. \& Schmidt, W. (1960). Z. Elektrochem. 64, 737-741.

Acta Cryst. (1980). B36, 2526-2529

The Structure of Diammonium Tricalcium Bis(pyrophosphate) Hexahydrate

By Shozo Takagi, M. Mathew and W. E. Brown
American Dental Association Health Foundation Research Unit, National Bureau of Standards, Washington, DC 20234, USA

(Received 12 February 1980; accepted 13 May 1980)

Abstract

$\mathrm{Ca}_{3}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ crystallizes in the monoclinic space group $P 2_{1} / n$ with $a=7.674$ (1), $b=$ 11.455 (2), $c=11.014$ (2) $\AA, \beta=92.44$ (5) ${ }^{\circ}$ and $Z=$ 2 at room temperature. The structure was refined to $R=0.059, R_{w}=0.057$ for 2179 reflections with $F_{o}>$ $3 \sigma\left(F_{o}\right)$. The structure consists of layers of Ca^{2+} and $\left.\left[\mathrm{P}_{2} \mathrm{O}\right]_{7}\right]^{4-}$ ions alternating with layers of Ca^{2+} and $\left[\mathrm{NH}_{4}\right]^{+}$ions and water molecules. The coordinations of the Ca^{2+} ions in the two layers are different. $\left[\mathrm{NH}_{4}\right]+$ ions and water molecules are hydrogen bonded to $\left[\mathrm{P}_{2} \mathrm{O}_{7}\right]^{4-}$ ions.

Introduction

Inorganic pyrophosphates are known to play an important role in the mineralization of teeth and bones
(Fleisch \& Russel, 1972). Detailed structural analyses of a number of pyrophosphates, particularly those formed at or about the physiological conditions, are necessary for any generalizations on their structural features and related properties. A survey of the known pyrophosphates has shown that the $\left[\mathrm{P}_{2} \mathrm{O}_{7}\right]^{4-}$ ion is capable of adopting a wide variety of conformations with different cations (Mandel, 1975). As part of our program to elucidate the crystal chemistry of calcium pyrophosphates, we report the structure of $\mathrm{Ca}_{3}\left(\mathrm{NH}_{4}\right)_{2}-$ $\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

Experimental

Suitable crystals of $\mathrm{Ca}_{3}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ were prepared by a slight modification of the procedure given by Brown, Lehr, Smith \& Frazier (1963). Freshly precipitated $\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (prepared by mixing $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ and

[^0]: (C) 1980 International Union of Crystallography

[^1]: * Lists of structure factors and powder data have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35431 (11 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

